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Theory of Spherical Agglomeration. I. Continuity
Equation for Granules in a Rotating Conical Drum*

S. LEVINE, F. W. MEADUS, and B. D. SPARKS

MONTREAL ROAD LABORATORIES
CHEMISTRY DIVISION

NATIONAL RESEARCH COUNCIL OF CANADA
OTTAWA, ONTARIO, CANADA KIA 0R9

Abstract

A theoretical study is made of the steady-state spherical agglomeration process
in a rotating conical drum used to separate bitumen from solid particles in oil
sands. Some consequences of the continuity equation for the flow of granules
suspended in a bitumen-solvent liquid are investigated. From this equation, and
experimental results, some general conclusions are reached concerning the
distribution of granule sizes, their segregation, and their rates of production and
destruction in the agglomeration process in the conical drum. It is argued that
layering is a special form of coalescence.

INTRODUCTION

Some theoretical aspects of spherical agglomeration are considered
here with particular reference to the recovery of bitumen from oil sands.
In this separation method, which is described in a series of papers (1-3),
finely divided sand particles suspended in a bitumen-solvent liquid are
agglomerated into granules and separated from the liquid by suitable
agitation and the addition of a small amount of water, which prefer-
entially wets the sand and is immiscible with the suspending medium.
The agglomeration process is an example of two-phase flow where one
phase is a continuous fluid and the other phase consists of a high
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concentration of dispersed particles. Such flow has been studied
theoretically by many authors (4-9) but in the absence of any particle
aggregation. In this paper we consider the continuity equation for the
granules (particles) undergoing coalescence, layering, and crushing in the
agglomeration process. In particular, we confine our attention to steady-
state flow in the rotating conical drum which has been used to separate
bitumen from solid particles in oil sands (/-3). The general properties of
the distribution of granules, their size segregation, and their rates of
production and destruction in the conical drum will be investigated.

CONTINUITY EQUATION FOR MOTION OF GRANULES

We can consider a discrete or a continuous distribution of granule
sizes. Choosing the latter, let n(m)dm be the number of granules per unit
volume in the mass range mm + dm and v(m) the velocity of the center of
a granule of mass m. The continuity equation for granules of mass m
is

on(m)
ot

+ V- (n(m)v(m)) = S(m) (D

where S(m) is the source term due to the creation and destruction of
granules of mass m in the agglomeration process. Precisely, S(m)dm is the
rate of change with time due to agglomeration in the number of granules
per unit volume in the mass range m,m + dm. The quantities n(m), v(m),
and S(m) all depend on position in the agglomerate charge contained in
the rotating conical drum and also on time in the unsteady state. We wish
to relate Eq. (1) to the macroscopic continuity condition for the dispersed
phase in the continuum theory of two-phase flow. Since mn(m)dm is the
mass of the granules in unit volume in the mass range m,m + dm, the
local total mass of granules in unit volume is

(1 = €)py = [ mn(m)dm 2

where p, is the density of a granule (which need not be constant) and ¢ is
the mean fraction of the local volume occupied by the continuous
(bitumen-solvent medium) phase, ie., ¢ is the porosity. The local mass
average velocity of the granules v, is defined by

(1 = &)pavy = [mn(m)v(m)dm (3)
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The quantities n(m), v(m), S(m),.€, and v, are examples of averages over
volumes large compared with a single granule volume but small on the
scale of the physical apparatus. Such averages are characteristic of the
parameters in the equations describing two-phase flow.

On multiplying by m and integrating Eq. (1) over all values of m, we
obtain

0
fm na(:n) dm + me s(n(m)yv(m))dm = fmS(m)dm 4)
We can interchange the orders of integration with respect to mass m and
of differentiations with respect to time and space to obtain

4
5711 = @pd + V- [(1 = )pava] = [mS(m)dm (5)

making use of Egs. (2) and (3). In the steady state, we have two
relations:

fmS(m)dm =0 (6)
and

V(1 —¢€)pvg =0 (N

so that the three terms in Eq. (5) are separately zero. Equation (6) alone,
which states that the rate of increase due to agglomeration of the total
mass of granules in unit volume is zero, is necessary but not sufficient to
ensure steady-state conditions. This is because the degree of trapping of
the continuous (bitumen-solvent medium) phase by the granules will
change during agglomeration so that both the granule density p, and
porosity € may be time-dependent.

To illustrate the meaning of Eq. (6), consider a thin slab between
parallel planes at z and z + Az, normal to the axis of the rotating conical
drum, where z is distance along this axis (Fig. 1). In the agglomeration
process, small granules enter the slab through the plane z and agglomer-
ate to form larger granules which leave the slab through the plane z + Az.
Fewer small granules but more larger granules leave at z + Az, keeping
the total mass of granules constant in the slab. It follows that a stable
steady-state condition also leads to size segregation. Consider now a
horizontal rotating, cylindrical drum in which agglomeration is taking
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—l A7 e

FiG. 1. Cylindrical polar coordinates R, 0, z. Thin slab of thickness Az normal to cone
axis.

place and any end effects can be neglected. In a steady-state condition the
distribution of granules in this drum should be homogeneous which is
impossible if agglomeration is taking place, since size segregation would
result, producing unsteady conditions. The axis of the cylindrical drum
must be tilted to the horizontal to make steady-state conditions possible.
It is well known that continuous flow agglomeration in a horizontal or
nearly horizontal rotating cylindrical drum is unstable, being character-
ized by “surging” or “cycling” (10, 11).

An example of the condition Eq. (6) is provided by coalescence of
granules as follows. We assume that the source term is

S(m) = %fm B(m'.m — mn(m n(m — m')dm'

— n(m) f " B(m,m yn(mdm’  (8)

where the coalescence frequency factor f(m,m’) = K, a constant. The first
term in Eq. (8) describes the rate of generation of granules of mass m
from masses m’ and m — m'. The second term is the rate of disappearance
of granules of mass m by collision with any other granule. Multiplying by
m and integrating with respect to m, the first term in Eq. (8) contributes to
the integral in Eq. (6)



13:22 25 January 2011

Downl oaded At:

THEORY OF SPHERICAL AGGLOMERATION. | 83

lz(—jwmdm fmn(m')n(m - m'ydm'
0

0

= %J n(m'ydm' J mn(m — m'ydm
0 .

= 12(;[ n(m')dm’ f (m” + m"YIn(m"ydm'’
0 0

= KMN 9)
where we have substituted m” = m — m’,

M= fm mn(m)dm (10)
which is the total mass of granuI(:as per unit volume, and

N=jwn(m)dm (1m
0

the total number of granules per unit volume. The second term in Eq. (8)
contributes

—Kf mn(m)dm f n(m'ydm' = —KMN (12)
0 0
which cancels exactly with the quantity in Eq. (9). That the condition Eq.
(6), although necessary, is not sufficient to establish steady-state condi-
tions is illustrated by choosing K a function of time 1. We shall still have
cancellation of Egs. (9) and (10), even though K is time-dependent.

A second example of the steady-state condition is given by the form for
S(m) which describes the crushing/layering process, namely (12)

S(m) = ~B(myn(m) = o (n(m)G(m) (13)

where B(m) is the fraction of granules broken in unit time, and G(m) is the
growth function, defined as the rate at which granules growing past mass
m pick up crushed material. It is assumed that the only source of layering
material is from crushed agglomerates. Multiplying by m and integrating
with respect to m, the second term in Eq. (13) contributes
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—J’w mdm —q—(G(m)n(m)) = fm G(m)n(m)dm (14)
o dm

0

integrating by parts and assuming that mnG —-0 as m — . The
condition Eq. (6) is

fw [G(m) — mB(m)|n(m)dm = 0 (15)
0

which states that the total increase in granule mass due to layering equals
the total loss due to crushing,

SIMPLIFIED CONTINUITY EQUATION IN CONICAL DRUM
Under steady-state conditions, Eq. (1) reads
V- (n(m)v(m)) = S(m) (16)

This states that the rate of increase due to agglomeration in the number of
granules in unit volume and in the mass range m, m + dm is equal to the
rate at which these granules are leaving the unit volume, so that the net
rate of increase is zero. Consider the volume 8V of the agglomerate
charge contained in the thin slab between the parallel planes atz, z + dz,
normal to the axis of the rotating conical drum. Applying the divergence
theorem, the integral over the volume 8¥ of the left-hand side of Eq. (16)
is transformed to a surface integral, namely

f V- (n(m)yv(m))dV = f n(m)v,(m)dS (17)
8V 88

where 8S denotes the surface bounding the volume 8V and v,{m) is the
outward component of the granule velocity normal to the surface §S. On
the rim of the slab, where the agglomerate charge has an interface either
with the solid drum or the air, v,(m) = 0 (Fig. 2). Hence we need only
consider the contribution to the right-hand side of Eq. (17) from the two
faces of the slab, which have areas A(z) and A(z + dz). Introduce
cylindrical coordinates R, 0, and z, where the z axis coincides with the axis
of the conical drum. The granule density » and the component of the
granule velocity in the z direction, v,, depend on the three coordinates R,
0, z, as well as on mass m. The right-hand side of Eq. (17) consists of the
integrals over the two faces of the slab, which we write as
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FI1G. 2. Cross section of rotating conical drum, showing granular motion.

j n(m,z + dz,R,0)v,(m,z + dz,R,0)dS
A(z+dz)

- J n(m,z,R,0)v,(m,z,R,0)dS = A(z + d2)(AV,), .4, — A)7V)),
A(z) (18)

where the overbar denotes the average value of the integrand over the
respective area. The right-hand side of Eq. (18) may be written as

[4(z + dz) = A@2)|(AV.),+4. + A (V)40 — (V)]
dA(z)
dz

= dz (W) + d2AG) - (). (19)

neglecting order (dz)~. The integral over over the volume 8V of the source
term S(m), which also depends on R, 9, and z, is

f S(m,z,R,0)dV = dzA(z)S(m,z) (20)
1

where S(m,.z) is the mean value of S(m) over the area A(z). Equating Egs.
(19) and (20), assuming that the granule density n depends only on m and
z and writing (v,), = v,(m.z), we get



13:22 25 January 2011

Downl oaded At:

86 LEVINE, MEADUS, AND SPARKS

dA(2)
A(z) dz

;1‘1; (n(m,z)v (m,z)) + n(m,z)v (mz) = §(m,z) (21)

We expect A(z) to be nearly proportional to z> when Eq. (21) becomes

—‘;—iz- (n(mz)v (m,z)) + %n(m,z)'\?,(m,z) = S(m,z) (22)

By averaging Eq. (6) over any cross-section:
fmg(m,z)dm =0 (23)

For a cylindrical drum we may assume dA4(z)/dz = 0 in Eq. (21).

PROPERTIES OF n(m,z) AND §(m,z)

Figure 3 shows schematic plots of n(m,z) as a function of the distance z
along the axis in the conical drum, under steady-state conditions for

Mo
mj

n{m,z)

m2

m3

my4

0 is

apex Zo zg  base
z
FIG. 3. Schematic representation n(m,z) in conical drum. Constant m contours in (n,z) plane.
mgy = mass of granule feed at apex. m, = largest mass of granule expelled at base.
mo<my <my<m3z<my<mg
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FI1G. 4. Percentage of total number of granules in conical drum in each Tyler sieve interval
plotted against smallest diameter of interval.

different granule masses. (Strictly, the curves represent n(m,z)Am for a
small mass range Am.) These plots are suggested by the following
information on granule distribution which is available from measure-
ments on the spherical agglomeration method of extracting bitumen
from oil sands, performed in the rotating conical drum apparatus. A Tyler
series of sieves, in which the sieve openings form a geometric progression,
having a common ratio v/2 in the diameter, have been used to separate
the granules present in the whole of the conical drum. In a range of sieve
diameters from about 0.2 to 0.6 cm, the total number of granules in each
sieve interval is very nearly constant. However, this number varies rapidly
for diameters smaller than 0.2 cm and at the top end of the sieve scale, as
illustrated in Fig. 4. Assuming the granules to be spheres, the striking
result from 0.2 to 0.6 cm yields as follows the overall distribution of
granule sizes as a function of their diameters. Let N(D)dD be the total
number of granules in the range of diameters D,D + dD. We require that
the integral

5l/4
f NP(D)dD = constant (24)

Dy

independent of D,. A power law dependence N(D)x D" satisfies this
requirement only if the exponent y = —1, in which case the progression
ratio 2" can be replaced by any positive number. (Other laws, such as the
exponential N(D) « exp (yD) are not suitable.)
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The total distribution of granules in the range of D where Eq. (24) holds
is

N(D)dD = %dD (25)

where A4 is a constant. In Fig. 4 the scale of the diameter axis is not
uniform but is in geometric progression. On transforming this scale to a
uniform one (in arithmetic progression), we replot the horizontal portion
of the curve N(D) versus 1/D to obtain Fig. 5, which confirms the relation
Eq. (25). (Figure 5 was obtained by plotting the cumulant of the
experimental number of granules in each interval of the sieve and
reading off granule numbers at equal diameter increments.) Introducing
the granule mass m o« D?, it is readily found that the total number of
granules in the mass range mm + dm, corresponding to Eq. (25) is

20

N
T

NUMBER (%)
©
1

1 1 |
0 1 2 1/D 3 4

FI1G. 5. Percentage of total number of granules in equal intervals of granule diameter plotted
as a function of diameter. The points shown were interpolated from the graph of cumulated
number percent against sieve diameter.
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4

N(m)dm =
3m

dm (26)

This inverse power law does not hold for the very small and the very large
granule masses. Equation (26) states that if n(m,z)Am is plotted as a
function of z in the narrow mass range m,m + Am, then the area under
this curve decreases with increase in m as 1/m.

A second piece of information is provided by an analysis, again with
Tyler series of sieves, of the size distribution of granules which are
discharged from the base of the rotating conical drums. As illustrated in
Fig. 6, the distribution resembles a normal one. Visual observation shows
that the granules are segregated according to size along the axis of the
cone. We expect that distributions from the middle of the conical drum
resemble that at the base (Fig. 6) although the granule masses will be
smaller. The plots of n(m,z) against z (Fig. 3) are intended to demonstrate
size segregation along the cone axis. At the apex, the granules are
assumed to have a narrow mass range about m,. For a given mass, n(m,z)
will have a maximum, where

on(m,z) _

3z 0 27

40
¥ 20
[+ o4
w
m
s
=2 -
4

()] S DS L ! [

03 0.5 0.7 0.9

DIAMETER D (cm)

Fi1G. 6. Percentage of total number of granules discharged at base from conical drum plotted

as a function of granule diameter.
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which defines a curve in the (m,2) plane. The position of this maximum
moves to larger z and smaller n(m,z) (as a result of Eq. 26) with increase in
m. For the larger masses, some of the granules are being expelled at the
base.

Making use of Fig. 3, we plot constant n contours in the (m,z) plane in
Fig. 7. The heavy curve is the locus of the maximum in Fig. 3 defined by
Eq. (27). In Fig. 3 the constant m plot for the largest mass m = m, is so
drawn that its maximum is at the base of the cone. In the case where this
curve has not reached its maximum at the base, the heavy curve in Fig. 7
would end at the base below m = m,. A curve in the (n,z) plane depicting
constant m can be regarded as consisting of two branches, situated on
each side of the maximum defined by Eq. (27). Along the z axis (# = 0) in
Fig. 3 on the low z branch, m increases with z from m, at the apex of the
cone to m,. In Fig. 3, let n, be the value of n at the maximum in the
constant m, curve, which we have placed at the base of the cone. Along a
horizontal line #(m.z) = n, in Fig, 3, where the constant n, < n,, again on
the low z branch, m increases with m from m, to m,. For constantn > n,m
increases with z from m, to terminate on the curve defined by Eq. (27).
Turning now to the high z branch, along the z axis (n = 0) in Fig. 3, m
increases with z, starting at the intersection of the constant m, curve with
the z axis (say z,) and terminating at the base. For any n < n,, the constant
n curve ends on the curve defined by Eq. (27).

apex z base

FI1G. 7. Schematic form of r(m,z) in conical drum. Constant n contours in (m.z) plane:
"y < ;.
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20
n{m,z) 2

Zs

25+1

0

mg m mg

FIG. 8. Schematic form of n{m,z) in conical drum. Constant z contours in (n,m) plane.

By making use of Fig. 7, we plot n(m,z) as a function of m for different z
in Fig. 8. To obtain these constant z curves, we examine vertical constant z
lines in Fig. 7, considering the variation in » along these lines. The locus
of the maxima in the constant z contours in Fig, 7 is given by

on(m,z)
m 0 (28)
From Figs. 3, 7, and 8 and the condition Eq. (23), S(m,z) must take
positive and negative values over the range m, to m, for m at any fixed z.
Also, S(m,z) must be zero in those ranges of m and z where n(m,z) is zero
(see Fig. 7). Consider first a value of z in the middle part of the axis, say at
z = z, in Fig. 7. As m is increased from m,, S(m,z) = 0 because n(m,z) = 0
until we reach the plot of n(m.z) for fixed z = z,. In the cross-sectional
area of the conical drum at z = z;, we can expect the number of smallest
granules to be diminishing while the number of largest granules is
increasing, This means that with increase in m, S(m,z) is at first negative
and then positive, returning to zero again when n(m,z) becomes zero. This
profile of S(m,z) shifts with a change in z, as illustrated in Fig. 9. §
(m,z) = 0 defines a function m = m(z), where m increases with z. Note that
because of the weighting factor m in the relation Eq. (23), the area under
the negative part of S(m,z) exceeds that under the positive part. Also, size
segregation is such that the granules become larger and hence their
number is reduced with an increase in z. This implies that the magnitude
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FI1G. 9. S‘(m,z) plotted as a function of m for different fixed 2.

of 8(m,z) in Fig. 9 decreases as z increases. Now suppose we keep m fixed
and observe the variation of S(m,z) with z. Figure 10 is readily obtained
from Fig. 9 merely by drawing a set of vertical lines in the direction of
increasing z through the plots of S(m,z). For the middle range of m, S(m,z)
will be zero for small and large values of z. In the range of z where a plot
of n(m,z) at such intermediate m is drawn in Fig. 4, S(m.z) will at first be
positive and then negative, with an increase in z. The profile of S(m,z)
shifts with z as shown in Fig. 10. This behavior of S(m.z) as a function of z
for different m can also be predicted from Fig. 4.

Further information about 8(m,z) as a function of z can be obtained by
integrating Eq. (22) to obtain

I(m,z)

z’n(m,z)

- f " 228 (m, 2)dz = (29)
) Jy

where ,(m,z) must be finite at the apex (z = 0) of the conical drum. No
meaning is attached to v(mz) in those regions where n(m.z) =0 and
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FiG. 10. 3‘(m,z) plotted as a function of z for different fixed m.

consequently S(m,z) = 0. At the cross-over of S(m,z) from positive to
negative values, where S(m,z) = 0, 0I(m,z)/8z = 0 and I(m,z) is a maxi-
mum. Except for large m, where S(m,z) does not return to zero in its
negative range with an increase in z, the integral I(m,z) over the whole
range of S(m,z) must vanish, since S(m,z) = 0 implies n(m.z) = 0. Other-
wise, v,(m,z) would become infinite. This tells us that except at the large m
in the plot of S(m,z) as a function of z, the positive region has a greater
area than the negative region. We also conclude that v,(m,z) is always
positive. Further information of v,{m,z) requires a study of the momentum
balance of the granule motion.

LAYERING—A SPECIAL CASE OF COALESCENCE

Although it has been customary to distinguish layering from coales-
cence, it is natural to raise the question of the difference, if any, between
layering and coalescence of two granules having widely separate sizes.
Dropping the factor % in the first term in Eq. (8), consider the difference
of the two coalescence integrals:
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fm B(m'.m — mIn(m'n(m — m'Ydm' — n(m) ) B(m' ,m;n(m"dm’
0 0 (30)

We identify m’ as the mass of a small granule which is layering on a large
granule of mass m. Let us therefore retain only small values of m', say
from 0 to Am in the two integrals and consider

fAm n(m')dm'[B(m’.m — m')n(m — m") — B(m',m)n(m)]
’ d Am
== “[n(m)f m'B(m’,m)n(m")dm’]  (31)
dm 0

very nearly. Comparison of the right-hand side of Eq. (31) with the
second term in Eq. (13) suggests that

G(m) = fAmm'B(m',m)n(m')dm’ (32)
0

This result is interpreted as follows: B(m',m)n(m’Ydm’'n(m)dm is defined
as the number of collisions resulting in coalescence between n(m')dm’
and n(m)dm granules in unit time. Replacing n(m)dm by 1, B(m’.m)
n(m’)dm’ is the corresponding number of collisions between one granule
of mass m and n(m’)dm’' granules in the mass range m',m’ + dm’' in unit
time. Hence m'B(m’,m)n(m')dm’ is the mass of the n(m')dm’ granules in
the mass range m',m’' + dm’ layering on the granule of mass m. Assuming
that small granules in mass range 0 to Am are layering on the granule of
mass m, Eq. (31) can be written in the familiar form (/2)

G(m) = dm/dt (33)

It should be noted that Am, which remains unspecified, depends on the
source of the small granules, for example due to crushing. No restriction
is placed on the form of B(m’,m) in the derivation of Eq. (31).

The omission of the factor % in the first integral in Eq. (30) remains to
be justified. The number of pairs between n(m’)dm’' and n(m —m’)
d(m —m') granules is half the product of these granule numbers.
Consequently, in Eq. (8) the factor ¥ is inserted to ensure that for a given
m’, collisions between granules of mass m' and m — m’ are not counted
twice. No factor of % appears, however, in the second term in Eq. (8)
because this term is due to collisions between n(m)dm granules, where m
is given, and any other granule. Each member of the given n(m)dm
granules can collide with n(m')dm’ granules in the mass range
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m',m' + dm'. Similarly, in layering, we are concerned with the number of
collisions between a given granule and n(m')dm’' small granules, and a ¥2
factor is no longer present. The absence of this factor is the difference
between layering and coalescence. We shall not discuss further the
implications of the result of Eq. (32). This formula for G(m) was obtained
earlier by Brock (13) in his treatment of the condensation growth process
for aerosol particles.

DISCUSSION

In order to make full use of the continuity equation, we require the
velocity v(m) of the granules in the conical drum as well as details of the
source term S(m). Information on the velocity v(m) is derived from the
momentum-balance equation for granules of mass range, mm + dm,
which corresponds to Eq. (1). In the usual treatment of two-phase flow (-
9), the momentum-balance equation for the granules would correspond
to Eq. (5), obtained from Eq. (1) by integrating over the distribution of
granule sizes. In addition, continuity and momentum-balance equations
need to be set up for the continuous phase. Determining the appropriate
momentum-balance equations for two-phase systems is much more
difficult than establishing continuity equations and, indeed, there is still
no general agreement on the correct forms. As a result of the averaging
process over volumes large compared with granule size but small on the
macroscopic scale, the disperse and continuous phases are each assumed
to fill the whole volume of the physical system. This requires introducing
stresses in each phase which are defined by constitutive equations
containing effective pressures and viscosities. In addition, fluctuation
terms are encountered as in turbulence. The presence of agglomeration
creates further difficulties. In Part II, we shall examine momentum-
balance equations for agglomerating granules under steady-state condi-
tions.
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